
Services and applications running in GSM, IMS

and EPC networks require signalling protocol

stacks. Embedding the stacks in the same pro-

cess where the application runs is a solution

that follows a non-distributed architecture.

A non-distributed architecture where the sig-

nalling and application planes are not separat-

ed has disadvantages, including limited scalabil-

ity and performance capabilities, and higher

costs in case of scaling by multiplying protocol

layer licenses.

Applicata JN Signalling Processing Unit (SPU) is

a signalling layer software-only implementation

covering SS7, SIP† and DIAMETER protocols.

It implements the separation of signalling and

application processes in a distributed architec-

ture. No specialised hardware is required and

SPU functions can be virtualised.

The signalling stacks and the application(s) run

in different processes communicating with

each other over IP.

 All applications and application instances at

the application plane share the same Signalling

Processing Unit(s) running at the signalling

plane. The applications can be easily scaled

without affecting the signalling layer. Typically,

two SPUs are enough at the signalling layer,

providing dual resiliency and high availability.

JN SPU comes with Signalling Layer Interface

libraries for different programming languages.

These hide the complexity of handling the in-

terface with the SPU, convert the protocol mes-

sages to/from language specific structures, and

make the integration of applications very easy.

For example, the applications implemented in

Java, C/C++, Go, Erlang, Python or other lan-

guages, including scripts, can use JN SPU for

signalling. Similarly, the SPU interface can be

implemented by Resource Adapters running in

JAIN SLEE containers.

Signall ing Architectures,
Separation of Signal l ing and Application
Planes

Separation of Signalling
and Application Planes

1

Applicata Signalling
Processing Unit (SPU)

1

SPU Architecture 2

Application & Signalling
Layer Interfaces

2

OA&M Interface 3

High Availability & Scala-
bility

3

Features & Benefits 4

Inside this publication:

KEY POINTS

 Easy integration

with applica-

tions written in

different lan-

guages

 Reduced costs of

ownership

 Proven and ex-

tendable plat-

form

 Extremely high

performance

and availability

 Round the clock

support

Non-Distributed Architecture:
Signalling and Application modules share the same process.
Scaling requires separate signalling modules and licenses.

Application Logic

Signalling Stacks

Application Logic

Signalling Stacks

Application Logic

Signalling Stacks

Application Logic

Signalling Stacks

Applicata Signalling Processing Unit:

Signalling and Applications planes are separated

in a distributed signalling architecture.

Applications can easily scale sharing the same

signalling modules and licenses.

Signalling Plane

SPU A:
Protocol Stacks,

Msg Dispatching,
HA Management

SPU B:
Protocol Stacks,

Msg Dispatching,
HA Management

Application Plane

App 1 App 2 App N

SS7 IMS EPC

Signalling and application planes are separated

in distributed architectures. Signalling plane

can be shared between the applications run-

ning at application plane.

Applicata Signal l ing Processing Unit

† In the roadmap

BRINGS VALUE NOT COSTS

Easy integration

High Scalability and Availability

Signalling Network Function Virtualisation

Integrated Protocol Stacks, Configuration and Monitoring

Applicata JN SPU offers a cost effective and feature reach signalling solution with integrated

protocol stacks, configuration and monitoring, rate control, message dispatching, very high

performance, easy integration, network virtualisation, service high availability and scalability.

JN SPU contains the following software modules:

 SS7 protocol stack modules, including M3UA, SCCP, TCAP,

MAP, CAP,

 Diameter modules, including Diameter protocol stacks and

application dictionaries,

 ASN.1 Encoding/Decoding modules for full support of

MAP version 1,2,3 and 4 and CAP Phases 1,2,3 and 4 ac-

cording to 3GPP specifications

 MAP, CAP and Diameter API modules

 Message dispatcher module

 Interface modules to Application layer and Operation, Ad-

ministration and Management

JN SPU software is available as RPM package for L:inux

RedHat/CentOS distributions, DEB packages for Ubuntu Trusty

and Xenial distributions. It can be also delivered as a fully

equipped Docker container containing the operating system

and SPU software. modules.

All JN SPU distributions are purely software based. JN SPU

package or container can be installed on physical servers or

virtual servers, including clouds.

may be connected to the same or to

different networks.

SLI libraries remove the need for imple-

menting the functionality for parsing

the data received from SPU in binary

ETF format at the application side, and

serializing it when data is sent to SPU

nodes.

When ETF buffer is parsed, the lan-

guage specific SLI library calls callbacks

provided by the application for each

parsed message parameter and supplies

the corresponding tag and value. This

way the application can easily convert

the message from ETF format into a

JN SPU comes with a set of language

specific Signalling Layer Interface (SLI)

libraries for use by the applications at

the Application layer.

SLI libraries include functionality for:

 establishing TCP/IP communication

with SPU node(s),

 deserializing/serialising the messag-

es from/to SPU nodes(s), and

 providing messages and message

parameters via callbacks to the appli-

cations.

Using SLI libraries the application(s) can

establish connection with a single SPU

node or with several SPU nodes that

language/platform specific structure.

SLI libraries radically facilitate the SPU

integration with applications imple-

mented in different languages. Current-

ly, SLI libraries are available for Java, Go,

Python and Erlang. SLI libraries for oth-

er languages (e.g., C/C++, Javascript

etc.) can be delivered on request.

Following the same approach Java SLI

library can also be wrapped into JAIN

SLEE Resource Adapters.

P A G E 2

provide functionality for the applica-

tions to register with the SPU node(s)

and to exchange their capabilities.

Application capabilities sent to SPU in-

clude some protocol specific parame-

ters. For example, MAP specific capabili-

ties may include the values or ranges of

IMSI, MSISDN etc. parameters; CAP spe-

cific capabilities may include the values

or ranges of Service Key and/or IMSI

parameters; Diameter specific capabili-

ties are defined as sets of values of User-

Name and Realm AVPs.

SPU Message Dispatcher module uses

the information from the capability ex-

change to route the incoming messag-

es to the appropriate application.

The protocol messages over ALI carry

the protocol specific operations and

parameters.

MAP and CAP protocol messages in-

clude dialogue handling for opening,

continuing and closing dialogues, and

service specific messages carrying de-

coded TCAP components.

Diameter protocol messages follow

Diameter protocol requests and re-

sponses.

JN SPU Application Layer Interface (ALI)

provides message based API for the

application layer. Messages over ALI

between the SPU and Application plane

are exchanged over TCP/IP formatted

according the Erlang External Term

Format (ETF), http://erlang.org/doc/

apps/erts/erl_ext_dist.html.

The API over this interface includes

management messages and protocol

specific messages.

JN SPU ALI module is responsible for

formatting and serializing the messages

to Application plane in ETF format and

deserializing the messages received

from the Application plane.

The management messages over ALI

J N S I G N A L L I N G P R O C E S S I N G U N I T

JN SPU can be easily integrated with applications

written in different, including scripting, languages Signall ing Layer Interface

Applicat ion Layer I nterface

Signall ing Processing Unit Modules

CentOS or Ubuntu/Debian, or container (e.g., Docker)

JN Signalling Processing Unit

SCTP Stack Manager

M3UA

SCCP

TCAP

Diameter

Application Layer Interface OA&M Interface

Message Dispatcher

TCAP-MAP/CAP
API

ASN.1
Encoder/Decoder

Diameter
API

Application Layer

Signalling Layer
Interface

App 1 App N

Application Layer

Signalling Layer
Interface

App 1 App N

OA&M

OA&M
Interface

Cfg Monitoring

OA&M

OA&M
Interface

Cfg Monitoring

JN SPU contains a lightful and powerful custom SSH shell im-

plementation that provides functionality for secure configura-

tion and monitoring.

The configuration and monitoring commands can be invoked

using a standard SSH client console. JN SPU provides user ac-

cess control over SSH based on password or public/private

keys.

The configuration and monitoring functionality is based on a

management model of the SPU system that represents the

configurable and monitorable parameters in a tree view. The

custom shell implements commands to view and/or edit the

branches or leaves in the tree.

The execution of the commands sent over the OA&M Interface

at JN SPU side is very efficient. Unlike the standard SSH dae-

mon in Linux the OA&M command execution in JN SPU does

not require starting a new bash shell process in the operating

system on each SSH connection. Instead, JN SPU SSH shell is

implemented in Erlang and new SSH connections require start-

ing of a Erlang process, an operation that is extremely light.

This efficiency is especially important for handling the monitor-

ing requests sent periodically and, possibly, frequently by mon-

itoring consoles that typically use a pull based monitoring

mechanism.

using the preferred language or plat-

form, for example Java, C# or C/C++,

and different services/applications may

use different languages.

In addition, JN SPU interface can be

used by application logic written in

some widely spread scripting lan-

guages, for example Javascript or Py-

thon, providing an option that may

significantly shorten the service devel-

opment and deployment time.

JN SPU modules are implemented in C

and Erlang. Its implementation is capsu-

lated and it runs in separate processes.

JN SPU instances can even run on sepa-

rate machines.

The language and the platform used for

JN SPU implementation does not imply

any restrictions regarding the program-

ming languages and platforms chosen

for the applications. Accordingly, the

application logic can be implemented

OA&M Interface

Easy Application Logic Integration

JN SPU supports resilient configurations
where more than one SPU instance is
run in active-active mode of operation.

SPU instances run in a cluster load-
sharing the signalling traffic between
themselves. If one of the instances fails
the surviving instances can continue
the operation.

J N S I G N A L L I N G P R O C E S S I N G U N I T

High Availabil i ty

P A G E 3

Configurations and Scalabil i ty

JN SPU can be deployed in different configurations depending

on the requirements. The smallest configuration comprises

one or two instances of SPU sharing the same physical or virtu-

al machine with the application(s).

The signalling layer still remains separated from the applica-

tion layer. Multiple applications share the same SPU(s).

the operation.

SPUs and applications can be deployed on multiple physical or

virtual machines. This configurations provides high availability

and the highest scalability and performance.

Signalling layer licensing costs do not increase when the sys-

tem scales up by adding additional applications, application

instances and/or application servers.

Signalling Plane

SPU A
Container

SPU B
Container
(optional)

Application Plane

App 1 App 2 App N

Single Physical or Virtual ServerSingle Physical or Virtual Server

Signalling Plane

SPU A
Container

Application Plane

App 1 App 2 App N

Physical or Virtual Server

SPU B
Container

Physical or Virtual Server

Physical or Virtual Server

App 2

Physical or Virtual Server

App 1 App 1 App 2

Physical or Virtual Server

App N

Applicata specialises in the design, development, installation and

integration of systems and software for law enforcement and tele-

communications. Applicata team guarantees that top quality

products and services will be delivered within tough deadlines

and budgets. Applicata is well known by its competitive ad-

vantages, including low cost, flexibility in covering specific cus-

tomer needs, on time delivery and extended support.

 SIGTRAN M3UA peer-to-peer and
ASP-SGW connectivity

 Multiple local SS7 point codes

 Full support for SS7 MAP and CAP

 SIP† and DIAMETER support

 SS7 MAP, CAP, SIP† and DIAMETER
API for the applications

 Fully software based

 Packaged as a rpm or deb or contain-
er for quick and easy deployment

 MAP versions 1,2,3 and 4

 CAMEL Phase 1,2,3 and 4

 SIP†

 DIAMETER

 SSH for OA&M
and provisioning

 Easy integration with applications

written in different languages

 Investment protection: signalling

layer can be shared between differ-

ent applications/services

 Open scalability and high perfor-

mance

 Multi-server configuration option

 Commercial licenses do not restrict

the capacity per server

 Network Virtualised Function option

 Cloud based operation option

www.applicata.bg

Protocols Benefits

About Applicata

Applicata

6, Angista Str

1527 Sofia, Bulgaria

Phone: +359 2 981 4203

Fax: +359 2 943 4719

office@applicata.bg

www.applicata.bg

Sales Asia

10F, No. 1, Lane 25, XinSheng S. Rd., Sec. 3

Taipei 10660, Taiwan R.O.C.

Tel: +886 2 8369 5685

Fax: +886 2 8369 5685

sales@applicata.bg

www.applicata.bg

Sales Europe

Ashwood, Woodcote

Guildford, Surrey, GU2 4HQ, UK

Tel: +44 1483 506384

Fax: +44 1483 506384

sales@applicata.bg

www.applicata.bg

Features

Applicata Signal l ing Processing Unit At Glance

P A G E 4

† In the roadmap

